a2 United States Patent
Zhang et al.

US009355081B2

(10) Patent No.: US 9,355,081 B2
(45) Date of Patent: May 31, 2016

(54) TRANSFORMING HTML FORMS INTO
MOBILE NATIVE FORMS

(71) Applicant: VMware, Inc., Palo Alto, CA (US)

(72) Inventors: Yao Zhang, Beijing (CN); Yu Xin Kou,
Beijing (CN); Chang Yan Chi, Beijing
(CN); Zhibin He, Beijing (CN); Junfei
Wu, Beijing (CN)

(73) Assignee: VMware, Inc., Palo Alto, CA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 172 days.

(21) Appl. No.: 14/304,756

(22) Filed: Jun. 13,2014

(65) Prior Publication Data
US 2015/0363368 Al Dec. 17, 2015

(51) Int.CL
GOGF 17/22 (2006.01)
GOGF 1730 (2006.01)
GOGF 1724 (2006.01)
(52) US.CL
CPC ... GOGF 17/2247 (2013.01); GOGF 17/243

(2013.01); GOGF 17/30893 (2013.01)
(58) Field of Classification Search
CPCcccee. GOGF 17/2247; GOG6F 17/243; GOGF
17/30896
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,725,238 Bl 4/2004 Auvenshine

6,920,480 B2 7/2005 Mitchell et al.

7,020,721 Bl 3/2006 Levenberg

7,216,292 B1* 5/2007 Snapper GO6F 17/243
715/234

Retrieve DOM tree from web
browser

410

7,275,212 B2 9/2007 Leichtling
7,418,472 B2 8/2008 Shoemaker et al.
7,676,549 B2 3/2010 McKeon et al.
8,650,494 Bl 2/2014 Sampath et al.
2002/0111995 Al 8/2002 Mansour et al.
2004/0239681 Al 12/2004 Robotham et al.

2007/0133876 Al* 6/2007 Chande CO6F 17/243
382/181

2008/0120393 Al 5/2008 Chen et al.
2008/0154824 Al* 6/2008 Weircccocoevinne GO6N 7/005
706/45

2008/0255852 Al 10/2008 Hu
2010/0082733 Al 4/2010 Bernstein et al.
2010/0269046 Al 10/2010 Pahlavan et al.
2010/0269047 Al 10/2010 Pahlavan et al.
2010/0269152 Al 10/2010 Pahlavan et al.
2011/0138295 Al 6/2011 Momchilov et al.
2011/0246904 Al 10/2011 Pinto et al.
2011/0314093 Al 12/2011 Sheu et al.

(Continued)
OTHER PUBLICATIONS

U.S. Appl. No. 14/062,326, entitled “User-Interface Virtualization
for Web Applications”, filed Oct. 24, 2013.

(Continued)

Primary Examiner — Asher Kells
(74) Attorney, Agent, or Firm — Patterson & Sheridan, LLP

(57) ABSTRACT

Techniques disclosed herein transform HTML forms into
forms with graphical user interfaces (Uls) native to mobile
devices. A user interface virtualization (UIV) agent divides an
HTML form into rows based on row breaks. The UIV agent
then identifies name-input pairs in the HTML form by apply-
ing a trained naive Bayes classifier to determine name fields,
and mapping the name fields to corresponding input fields. In
addition, the UIV agent generates metadata which includes
both information describing the rows in the form and the
name-input information. Based on the metadata, a native
form renderer running in the client device draws the form
with native Ul elements. In addition, the native form renderer
forwards native Ul events as HTML events.

20 Claims, 6 Drawing Sheets

Native Form Renderer 400
I's

Render HTML form and render
native Ul form based on

Divide HTML form into rows

!

Determine DOM nodes that
represent names using learned
classifier
430
i
Map names to corresponding
inputs
440
!

Generate form metadata

!

Transmit form

received metadata

!

Receive user input as native Ul
events
480

l

Forward native Ul events as
HTML events
430

US 9,355,081 B2
Page 2

(56)

2012/0042271
2012/0159310

2012/0226985
2012/0311457
2013/0055102
2013/0132856
2013/0246932
2013/0290856
2013/0290857
2014/0013234
2014/0082512
2014/0096014
2014/0351684

References Cited

U.S. PATENT DOCUMENTS

Al
Al*

Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al*

2/2012
6/2012

9/2012
12/2012
2/2013
5/2013
9/2013
10/2013
10/2013
1/2014
3/2014
4/2014
11/2014

Ma et al.

Changccccooeveneee GOGF 8/40
715/239

Chervets et al.

O’Gorman

Matthews et al.

Binyamin et al.

Zaveri et al.

Beveridge et al.

Beveridge

Beveridge et al.

Neuert et al.

Johnson et al.

Smit G06Q 10/06

715/222

OTHER PUBLICATIONS

PhoneGap; website home page—http://phonegap.com/.
Appecelerator; website home page—http://www.appcelerator.com/.
Capriza; website home page—https://www.capriza.com/.

Citrix Mobility Pack; website—http://support.citrix.com/proddocs/
topic/receiver/mobility-pack-wrapper.html.

Australian Office Action Patent Application No. 2013204723 dated
Nov. 12, 2014, 3 pages.

Cheng-Li Tsao: “SmartVNC: SmartVNC: An Effective Remote
Computing Solution for Smartphones”, Sep. 23, 2011, pp. 13-24,
XP055070896, ACM, [retrieved from the Internet Jul. 11, 2013].
Extended European Search Report, dated Jul. 22, 2013, Application
No. EP 13164249.8, 7 pages.

* cited by examiner

US 9,355,081 B2

Sheet 1 of 6

May 31, 2016

U.S. Patent

\

/

OS] wloje|d siempieH

W3

(s)ndo

gzl waisAg Bunesadp

o9ct
elD dopise [EnHIA

Y43

Jalopusy WI0H SAllBN

ZT 901a(JudlD

I 34NOId

] JJOMION

ZIT Aely ebeloig

\ 201 wioneld ssempieH j
W3 (sindo
>
Y07 JosinIedAH
SN T T
P NOLE ‘oLY !

I NWA ! i WINA !
/lllll\\ _/r |||||||||| ’
\\ |||||||||||||||||||||||||| ll
1 |
V| veoT 5O “
| dopisag dopsaq i
| renpia [ENHIA m
] 1
; ooo [|
' Jesmoug gopn ||)
i “
| |
“ ZoT uebe AN | 1
“ |
1 |
1 - 1
! 30T “
| 9oedg uonnoaxg sulyoep [enuiA |
N e e e e e e e e e e e s
(001 Jentes \

U.S. Patent May 31, 2016 Sheet 2 of 6 US 9,355,081 B2

1] —
] 201
202\’/\L i [|
ogin:
E_] A
Password: | g
200
oo N~ L —1
: 203
(Note: you should make sure . . .)__
™~
NNNNNNNNNNNNNN 204
A
4)
] I Tk~
) 206
Login: Login: | 0 4o [~
= | T [0
@ =N Password: | |
_/ \
(Notg 210
(Note: you should make sure . . .)
\\/\
- J 125

FIGURE 2

US 9,355,081 B2

Sheet 3 of 6

May 31, 2016

U.S. Patent

€ 3dN9OId
g
°0ce
1eol} jeol} 2ope <
MOl BUQ jeoy Jeoj} f
el
MOl BUQ jeoy Jeoj} 09¢
‘oce ‘oee v
. °06¢e
HERERR RN
MOJ BUQD jeol || 1eoj}
MOJ BUQD jeol || 1eoj} %\
jeol || 1eoj} ‘ove <
N hd \f
L
\0zZe 0g€ oLe

oee
A
Jeoyl jeol
MOl BUQ jeoly jeoy}
MOl BUQ jeoly jeoy}
jeoy) jeoy}
NONm NOmm
‘oee
\\/
Jeoyy jeol
MOJ BUQ Jeoj} Jeoj}
MOJ BUQ Jeoj} Jeoj}
Jeoyy jeoy
loge
HIAS

US 9,355,081 B2

Sheet 4 of 6

May 31, 2016

U.S. Patent

01017

06¥

SJuaAS TNLH
SE SJUBAS | SAljeU pJemio

08y
s]UBAS

[N @AleU Se Jndul 19sn SAI900Y

1

0¥
BJEPE]SW PBAISISI
uo paseq WIoj [dAREU
Japuai pue wioy A LH Jepusy

¥ 34NOId

TOIopUSy W0 OANEN

09%
elepeloW WIo) Iuisuel |

A

0S¥
BlEpe)oW WI0J 8]BIsusr)

9

[0}%7%
sindui
Buipuodss.109 0] ssweu depy

%

(0157
Jalissepo
pauled| Buisn ssweu Jussaidal
1By} $8pou NOJ sulwieeq

%

0cy
SMOJ OJul W0} TLH 9PIAIQ

*

(1157
Jesmolq

gom Woll 83l INOQ dAs8U8Y

JUSBY AN

U.S. Patent

May 31, 2016 Sheet 5 of 6

From Step 410

US 9,355,081 B2

|

|dentify form DOM nodes
421

'

Decompose form DOM nodes into
float elements, pre-inline elements,
sur-inline elements, and inside rows

422

|

Merge decomposed DOM nodes to
generate rows
423

420

\ 4
To Step 430

FIGURE 5

U.S. Patent

May 31, 2016 Sheet 6 of 6

From Step 420

US 9,355,081 B2

Y

Retrieve text DOM node in form

A

431

A

Determine probability that text DOM
node represents name field P(N+|D)
432

Y

Determine probability that text DOM
node does not represent name field
P(N-|D)

433

A

Identify text DOM node as name field if
P(N+|D) > P(N-|D)
434

More text DOM

nodes in form?
435

430

!

To Step 440

FIGURE 6

US 9,355,081 B2

1
TRANSFORMING HTML FORMS INTO
MOBILE NATIVE FORMS

CROSS-REFERENCE TO RELATED
APPLICATION(S)

The present application is related to U.S. patent application
Ser. No. 14/062,326, filed Oct. 24, 2013 and entitled “User-
Interface Virtualization for Web Applications”, which is
assigned to the same assignee as the present application.

BACKGROUND

Users of mobile devices with touch-screens face several
challenges when interfacing with traditional web applications
intended for access by a browser at a terminal with a full-size
display. One challenge relates to reading and inputting infor-
mation into HTML forms displayed on mobile devices. Such
HTML forms are traditionally designed for personal com-
puter (PC) browsers. However, PCs provide larger screens
and require different user behaviors than mobile devices. As
a result, it can be less convenient for users to read and input
information into HTML forms on mobile devices. For
instance, an HTML form designed for PC browsers may be
displayed on mobile devices at a small size that is difficult to
read. In such a case, the user may need to pinch to zoom in on
input fields of the HTML form, enter information into the
input fields, and then zoom back out.

SUMMARY

One or more embodiments of the present disclosure pro-
vide a method of dividing a markup document form into rows
based on row breaks. The method generally includes deter-
mining name fields in the markup document form which
specify the names of input fields. The method further includes
determining the input fields in the markup document form
which correspond to the determined name fields. In addition,
the method includes generating Ul metadata that specifies the
rows and the name and input fields, and rendering, ata mobile
client device and based on the Ul metadata, a form having Ul
elements native to the mobile client device.

Further embodiments of the present invention include,
without limitation, a non-transitory computer-readable stor-
age medium that includes instructions that enable a computer
system to implement one or more aspects of the above meth-
ods, as well as a computer system configured to implement
one or more aspects of the above methods.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a computer system architecture for dis-
playing HTML forms as native Ul forms at a client device,
according to an embodiment.

FIG. 2 illustrates an example HTML form and a native Ul
form generated based on the HTML form, according to an
embodiment.

FIG. 3 illustrates an approach for dividing an HTML form
into rows, according to an embodiment.

FIG. 4 illustrates a method for generating a graphical user
interface (GUI) for an HTML form that is to be displayed on
a client device, according to an embodiment.

FIG. 5 illustrates in greater detail one of the steps of the
method of FIG. 4.

FIG. 6 illustrates in greater detail another step of the
method of FIG. 4.

10

15

20

25

30

35

40

45

50

55

60

65

2
DETAILED DESCRIPTION

Embodiments disclosed herein provide techniques for
transforming HTML forms into native graphical user inter-
face (UI) forms and rendering the same at a client device. An
HTML form may be characterized as being composed of a
plurality of name-input pairs and some other action elements
(e.g., submit buttons) that are located in a plurality of rows.
Embodiments of the present disclosure describe a method for
extracting such row and name-input information from an
original HTML form, and then rendering such information as
a native Ul form (e.g., at a mobile client device).

In one embodiment, a native app or Ul form is an applica-
tion or Ul form that is specifically designed to run on a
device’s operating system and machine firmware, and typi-
cally needs to be adapted for different devices. In comparison,
a Web app (or browser application) or form is one in which all
or some parts of the software are downloaded from the Web
each time it is run. It can usually be accessed from all Web-
capable mobile devices. For instance, a native application
developed for the iPhone will need to run on its proprietary
i0S platform. A Web app, however, is typically coded in a
browser-rendered language such as HTML combined with
JavaScript.

In one embodiment, a user interface virtualization (UIV)
agent divides an HTML form into rows based on row breaks.
Further, the UTV agent applies a trained naive Bayes classifier
to determine name fields in the HTML form, where a name
field is one of two fields that form a name-input pair, and the
name field in particular indicates what the input field is for.
Experience has shown that name-input pairs are common in
HTML forms. For example, on a log in screen, the “user-
name” text that appears before the input box for entering a
username would be a name field. After determining name
fields, UIV agent maps the name fields to corresponding input
fields and generates metadata which includes both informa-
tion describing the rows in the form and the name-input
information. Based on the metadata, a native form renderer
running in the client device draws the form with native Ul
elements. In addition, the native form renderer forwards
native Ul events as HTML events. The events may include
inputting text, clicking a button, and the like. Forwarding
native Ul events may include transforming the native Ul
events to HTML UI events and transmitting the HTML UI
events to a browser (e.g., transmitting HTML Ul events from
a client mobile device to a browser running in a remote
desktop). For example, native Ul text input events may be
forwarded as HTML events so that the same text that is
entered into the native Ul form is entered into the correspond-
ing HTML form, and the event of pressing the submit button
of the native Ul form may be forwarded as an HTML button
click event so that the corresponding HTML form is submit-
ted.

FIG. 1 illustrates a computer system architecture for dis-
playing HTML forms as native Ul forms at a client device
125, according to an embodiment. As shown, computer sys-
tem 100 includes a server 100 which is connected to client
device 125 via a network 140 (e.g., the Internet). Server 100
is constructed on a server class hardware platform, such as
hardware platform 102, which may be, e.g., an x86 architec-
ture platform that includes a processor, system memory, and
disk drive, among other things. Although a single server 100
is shown, it should be understood that multiple servers may be
employed in, e.g., a server cluster.

A virtualization software layer, also referred to hereinafter
as a hypervisor 104, is installed on top of hardware platform
102. Hypervisor 104 supports a virtual machine execution

US 9,355,081 B2

3

space 106 within which multiple virtual desktops (i.e., virtual
machines running desktop operating systems and applica-
tions) may be concurrently instantiated and executed. As
shown, virtual execution space 106 includes virtual desktops
108, _,. In one embodiment, for each virtual desktop running
on server 100, hypervisor 104 provides a corresponding vir-
tual machine monitor (VMM) 110,-110,, that implements
virtualization support such as emulated hardware to coordi-
nate operations between hypervisor 104 and the virtual desk-
top. In addition, a virtual desktop management server (not
shown), such as the VMware Virtual Desktop Manager prod-
uct commercially available from VMware, Inc. of Palo Alto,
Calif., may be placed between server 100 and client device
125 and function as a connection broker that manages con-
nections between client terminals and virtual desktops
108, .

As shown, a web browser 109 and a UIV agent 107 run in
virtual desktop 108,. Web browser 109 is configured to
retrieve markup language (e.g., HTML), interpreted program
code or scripting code executable by the browser, image data
(e.g., GIF, JPEG files), formatting information (e.g., Cascad-
ing Style Sheets), etc. and render the content to generate a
user interface (UI). Examples of web browsers include
Microsoft Internet Explorer® and Mozilla Firefox®. UIV
agent 107 is configured to traverse a document object model
(DOM) tree generated by web browser 109, extract rows ofan
HTML form based on row breaks, determine name-input
pairs using a trained naive Bayes classifier, and output meta-
data which includes information specifying the rows and
name-input pairs, as discussed in greater detail below. UIV
agent 107 transmits such metadata to client device 125.

At client device 125, which may be any type of mobile
device such as a mobile phone, a tablet device, a personal
digital assistant (PDA), etc., a thin virtual desktop client 126
connects to one of the virtual machines running the desktop
operating system and presents the virtual desktop to a user. As
shown, the virtual desktop client 126 includes a native form
renderer 127 which is configured to draw, based on metadata
received from UIV agent 107 and using Ul elements native to
the client device 125, a form which corresponds to the origi-
nal HTML form. In addition, native form renderer 127
receives and forwards native Ul events as HTML events to
browser 109.

Although a particular system architecture 100 is illustrated
in FIG. 1, it should be understood that techniques similar to
those disclosed herein may be implemented in computer sys-
tems having other architectures, such as those described in
U.S. patent application Ser. No. 14/062,326, filed Oct. 24,
2013 and entitled “User-Interface Virtualization for Web
Applications,” which is incorporated by reference herein in
its entirety. In particular, techniques disclosed herein do not
require a remote desktop and may be applied to a mobile
device accessing any webpage. For example, functions
described herein as being performed by UIV agent 107 and
native form renderer 127 may be performed by a single mod-
ule executing on client device 125.

FIG. 2 illustrates an example HTML form 200 and a native
UT form 240 generated based on HTML form 200, according
to an embodiment. As shown in panel A, HTML form 200
includes four rows 201-204 containing a “L.ogin:” name field
and an input field, a “Password:” name field and an input field,
a “Log in” button, and a “(Note: you should make sure . . .)”
text field, respectively. UIV agent 107 is configured to
traverse a DOM tree representing the HTML document, iden-
tify DOM nodes corresponding to HTML form 200, and
generate row metadata for distinct rows in HTML form 200
based on row breaks. For example, UV agent 107 may divide

10

15

20

25

30

35

40

45

55

60

65

4
HTML form 200 into rows and generate the following Java-
Script Object Notation (JSON) metadata which corresponds
to HTML form 200:

TABLE 1
{
"e":"form",
"rows":[
[{"iid":10, "e":"text”, "text":"Login", ...},

"ii "e":"input”,"type":"text", ... }],
[{"iid":12, "e":"text”, "text":"Password:", ...},

"ii "e":"input”,"type":"password”,...}],
[{"iid":15, "e":"input”,"type":"submit","id":"",......}],
[{"iid":16, "e":"text”, "text":"(Note: you should make ...)", ...}]

]
}

In addition to dividing HTML form 200 into rows, UIV
agent 107 identifies name-input pairs in the rows. Each row
may include zero or more name-input pairs. As discussed,
HTML form 200 includes the “Login:” name field and the
“Password:” name field. In one embodiment, name fields may
be identified using a trained naive Bayes classifier, discussed
in greater detail below. After name fields are identified, UIV
agent 107 maps the name fields to corresponding input fields
which appear nearby. UIV agent 107 then updates the meta-
data shown in Table 1 by adding a “for” attribute associating
the name fields with their corresponding input fields. The
resulting metadata is shown in Table 2. As shown, the
“Login:” name field is a text field (element “e” is “text”) with
item ID (“iid”) 10, a text input field has iid 11, the “Pass-
word:” is another text field with iid 12, etc. Further, the
“Login:” name field having iid 110 is “for” the text input field
having iid 11, indicating that this “L.ogin:” name field and the
textinput field having iid 11 are a name-input pair. In contrast,
the text field “(Note: you should make . . .) having iid 16 is
for “~1,” indicating that there is no associated input field for
this text field.

TABLE 2

{

‘e":"text”, "text":"Login”, "for":11,...},

" ”input”,”type”:”teXt”, }]
"text”, "text”:""Password:" b
put”,"type":"passwor s

' ”:”input”,”type”:”Submit”,”id”:””, }],

'e":"text”, "text":"(Note: you should make ...)",
¥

Panel B shows an example rendering of the HTML form
using native Ul elements. Metadata generated by UIV agent
107 is sent to native form renderer 127 which runs in client
device 125. As discussed, native form renderer 127 is respon-
sible for constructing and displaying native UI elements hav-
ing the same functionality and information as corresponding
Ul elements in the HTML form, based on the metadata. Such
native Ul elements may be classes for Ul objects in the mobile
device operating system (OS), as opposed to HTML elements
which are components of HTML documents. For example,
HTML input text field <input type="text”> may be mapped to
native Ul element Ul TextField in the iOS operating system, to
native Ul element EditText in the Andriod OS, and to native
UT element TextBox in Windows. Other examples of map-
pings between HTML elements and native Ul elements for
the i0S operating system are set forth in Table 3.

US 9,355,081 B2

TABLE 3
HTML 108
<form> UlTableView
<button> UIButton
<input type="“submit”>
<input type="“button”>
<label> UlLabel
<gpan>...
<input type=“checkbox”> UlSwitch

Customized UIView
UlIPopoverController&UITableView(iPad)
UlTableView(iPhone)

<input type="“radio”>
<input type="“selected”>

<input type="“text”> UlTextField

<input type="“password”> UlTextField whose secureTextEntry =
YES

<textarea> UlTextView

 UllmageView

alert UlAlertView

Returning to the FIG. 2, native Ul form 210 is rendered in
front of the original HTML form 200. Also rendered is an
annotation or a button 206 which indicates availability of
native UI form 210. In one embodiment, native form 210 may
be rendered in response to the user pressing annotation or
button 206. When the user enters text into a field of native
form 210, native form renderer 127 may enter the same text in
the HTML text input field of HTML form 200. That is, native
form renderer 127 forwards native Ul events as HTML events
to the browser so that, among other things, text that is entered
into native form 210 is also entered into HTML form 200. In
addition, native form renderer 127 may forward events such
as pressing on the “LOG IN” button in native form 210 so that
the “LOG IN” button in HTML form 200 is also pressed.

FIG. 3 illustrates an approach for dividing an HTML form
into rows, according to an embodiment. A row may be char-
acterized as a set of adjacent HTML elements which do not
contain any line breaks (e.g., caused by
 element). It is
recognized that some HTML forms may be explicitly struc-
tured in rows, such as in row elements (e.g., <tr>) of an
HTML table element (e.g., <table>). In such cases, tech-
niques described herein are adapted to simply divide the
HTML into rows as expressly structured. However, recent
techniques for designing HTML pages, especially forms,
have moved away from expressly structuring a webpage and
towards laying out an HTML form using a combination of
block-level, inline-level, float elements, and style properties
which are rendered in rows. In such cases, the described
techniques may be used to decompose an HTML form into an
array of rows, which is useful for matching name-input infor-
mation, as described later.

Panel A shows how two DOM nodes of a form include (and
may be decomposed into) a first set 310 of float elements
350,, pre-inline elements 320,, complete rows 340,, and
sur-inline elements 330, and a second set 320 of float ele-
ments 350, pre-inline elements 320,, inside rows 340,, and
sur-inline elements 330,. In one embodiment, UI'V agent 107
may identify row breaks to divide a form into rows. To do so,
UIV agent 107 checks all block elements, inline elements,
and float elements in the form. Block elements are elements
such as <p>, <table>, <h1>, that typically occupy one or more
rows exclusively and generate two row breaks, one before and
one after the block element. An exception is a float element,
which is a type of block element that floats to the beginning or
end of arow and does not generate row breaks. Float elements
are frequently used in forms for improved layout. In contrast
to block elements, in-line elements do not generate row
breaks and are typically displayed alongside other elements
in the same row.

10

15

20

25

30

35

40

45

50

55

60

65

6

To divide the HTML form into rows, UIV agent 107 places
inline elements into a single row (e.g., rows 340, ,) until a
row break that is caused by, e.g., a block element being
encountered in a DOM node corresponding to the HTML
form. If a float element is encountered, UTV agent 107 places
the float element at the beginning or end of the current row, as
appropriate. Illustratively, float elements 350, , are placed at
the beginning of rows 340, _,. It should be understood that in
DOM nodes, some inline elements may appear at the begin-
ning or end of each DOM node and before or after a row
break, respectively. Such inline elements are referred to
herein as pre-inline (e.g., 320,) and sur-inline (e.g., 330))
elements, respectively, and may be added either to the row
generated from sur-inline elements of a previous DOM node
or to a row with pre-inline elements from a next DOM node.
As shown in panel B, sur-inline elements 330, are merged
with pre-inline elements 330, to form another row.

FIG. 4 illustrates a method 400 for generating a graphical
user interface for an HTML form that is to be displayed on a
client device, according to an embodiment. As shown, the
method 400 begins at step 410, where UIV agent 107 retrieves
a DOM tree from a web application. In one embodiment, UTV
agent 107 may include an intermediary agent which runs as a
plugin in the web application and retrieves the DOM tree. In
alternative embodiments, UIV agent 107 may parse HTML
documents itself to generate DOM trees, or performs steps
similar to steps 420-460, discussed below, without relying on
a DOM tree.

At step 420, UIV agent 107 divides an HTML form in the
DOM tree into rows. Given the DOM tree retrieved at step
410, UIV agent 107 may traverse the DOM tree, identify
DOM nodes corresponding to forms, decompose the identi-
fied DOM nodes, and merge the decomposed DOM nodes
into rows. As discussed, UIV agent 107 may identify row
breaks to divide the form into rows. In particular, UIV agent
107 may place inline elements of a HTML form into a single
row until a row break that is caused by, e.g., a block element
is encountered in a DOM node corresponding to the form. If
a float element is encountered, UIV agent 107 places the float
element at the beginning or end of the current row, as appro-
priate. Further, some inline elements may appear at the begin-
ning or end of each DOM node, and such pre-inline and
sur-inline elements may be merged with the row generated
from sur-inline elements of a previous DOM node or to a row
with pre-inline elements from a next DOM node, respec-
tively.

At step 430, UIV agent 107 determines DOM nodes that
represent names using a learned classifier. Name-input
semantic information is important for building an accurate
form layout. UIV agent 107 may include a name-input match-
ing engine that groups names and inputs together as name-
input pairs. The name-input matching engine is a machine
learning system that is trained to classify text DOM nodes as
either a name of an input field or not, i.e., a “non-name” field.
During the training phase, a number of HTML forms may be
collected from the internet as raw data and training data may
be generated from the raw data by manually identifying
name-input pairs, i.e., manually classifying the HTML form
elements. Such training data may then be used to calculate
prior probabilities and build a naive Bayes classifier. As typi-
cal in machine learning, the trained naive Bayes classifier
may be validated to determine accuracy of the classifier.

As discussed in greater detail below with respect to FIG. 6,
the naive Bayes classifier may be applied to determine both a
probability that a given DOM node is a “name” of an input
field and a probability that the given DOM node is not a
“name” of an input field. In such a case, UIV agent 107 may

US 9,355,081 B2

7

determine that the given DOM node is a name if the probabil-
ity that the given DOM node is a name is greater than the
probability that the given DOM node is not a name.

At step 440, UIV agent 107 maps names to corresponding
inputs. As discussed, UIV agent 107 determines name-input
pairs, with the name field being identified using a learned
classifier. Having identified the set of possible names at step
430, UIV agent 107 further identifies input fields correspond-
ing to those names. In one embodiment, UIV agent 107 may
identify the input field corresponding to a name by analyzing
the row containing the name and adjacent rows, according to
predefined rules. It is recognized that name fields generally
appear close to input fields in a HTML form. For example, if
the name field is in row 3, then UIV agent 107 may pick rows
2, 3, and 4 and pick the input field that is to the right of the
name field in row 2. If no such input field exists, then UIV
agent 107 may pick any input field in rows 2 or 4 that is closest
to the name field.

At step 450, UIV agent 107 generates form metadata based
on the determined rows and name-input pairs. One example
of form metadata is shown above in Table 2. Such form
metadata may indicate the distinct rows in the form, as well as
the name-input pairs and other elements in those rows.
Although step 450 is illustrated as a separate step, it will be
understood that UIV agent 107 may alternatively generate
form metadata as part of dividing the HTML form into rows
at step 420 and determining name-input pairs at steps 430-
440. For example, UIV agent 107 may add row metadata to a
file after separating rows in the HTML form and then add
name-input pair metadata to the file after identifying name-
input pairs.

Atstep 460, UV agent 107 transmits the form metadata to
client device 125. UIV agent 107 may transmit the form
metadata using any feasible channel, such as a virtual desktop
infrastructure (VDI) channel between remote desktop server
100 and virtual desktop client 126. Then, at step 470, native
form renderer 127 renders the native UI form based on the
metadata received from UIV agent 107. As discussed, native
form renderer 127 is a client-side application configured to
construct and display “native” Ul elements having the same
functionality and information as corresponding Ul elements
in the HTML form based on form metadata received from
UIV agent 107. For example, HTML input text field <input
type="text”> may be mapped to UlTextField in the iOS oper-
ating system (OS), to an EditText in the Andriod OS, and to a
TextBox in Windows. A native Ul form may then be con-
structed having the mapped Ul elements. For example, native
form renderer 127 may build a complete memory model of
the form from the metadata, including the elements and rows
in the form, and then use Ul control to regenerate the form and
also bind event function onto Ul control.

In one embodiment, the original HTML form may also be
rendered, and the native UI form may be rendered as a pop-up
in front of the HTML form, either automatically or in
response to user action causing the native Ul form to be
rendered.

At step 480, native form renderer 127 receives user input as
native Ul events when the user inputs text or otherwise inter-
acts with the native UI form rendered at step 470. Then at step
490, native form renderer 127 forwards the native Ul events as
HTML events. As discussed, the forwarded events may
include inputting text, clicking a button, and the like, while
the forwarding itself may include transforming the native Ul
events to HTML UI events and transmitting the HTML UI
events to browser 109. For example, when a user enters text
into a field of the native UI form or presses the submit button
of the native Ul form, native form renderer 127 may forward

25

30

40

45

55

8

the native Ul text input or button clicking events as HTML
events so that the same text is input into the HTML form or the
same HTML form information is submitted.

FIG. 5 illustrates step 421 of method 400 in greater detail,
according to an embodiment. As shown, UIV agent 107 iden-
tifies DOM nodes for a form at step 421. Given a DOM tree,
the DOM nodes corresponding to a form include form nodes
and their child nodes. In one embodiment, UIV agent 107
may recursively parse the DOM nodes corresponding to a
“form” by, e.g., invoking a function that accepts a DOM node
as input and calls itself recursively.

At step 422, UIV agent 107 decomposes the form DOM
nodes into float elements, pre-inline elements, sur-inline ele-
ments, and inside rows. Each form row may include zero or
more float elements that float to the beginning or end of the
row. Pre-inline elements are inline child elements at the
beginning of the DOM node, before a row break. Such pre-
inline elements may be merged with inline elements at the end
of a previous DOM node, referred to herein as sur-inline
elements. Inside rows are rows formed by row breaks in the
DOM node, such as rows formed by block elements.

At step 423, UIV agent 107 merges the decomposed DOM
nodes to produce rows. In one embodiment, float elements
may be placed at the beginning of rows. Sur-inline elements,
if any, from a previous DOM node are then merged with
pre-inline elements, if any, from the current DOM node to
form a row. Inside rows (with their float elements) are kept as
individual rows, without merging. It should be understood
that float elements may also have child block elements with
more than one line, and such float elements may be treated as
float block elements that cause row breaks.

FIG. 6 illustrates step 422 of method 400 in greater detail,
according to an embodiment. As shown, UIV agent 107
retrieves a text DOM node in a form at step 431. At step 432,
UIV agent 107 determines the probability that the text DOM
node is aname field P(N+/D). DOM node D is defined by a set
of attribute-value pairs, such as “bold™: true, “color”: “blue,”
and the like. According to Bayes’ theorem, the probability
that a given text DOM node is a name field P(N+ID) is given
by P(N+ID)=P(DIN+)*P(N+)/P(D). The P(D) term can be
ignored because, as discussed in greater detail below, P(N+
ID) is divided by the probability that the text DOM node is not
a name field P(N-ID) and thus the P(D) terms drops out. The
P(N+) term may be calculated “as the ratio of name fields to
all text DOM nodes.” This ratio is a prior probability that can
be determined experimentally from training data. In particu-
lar, manually classified training data may be used to compute
such prior probabilities. By naive Bayes, the P(DIN+) term
may be calculated as:

P(D | N+) = P(attributel = vy, attribute; = vy, ...attribute, = v, | N+)
= P(attributel =v | N +) * P(attribute, =

Vo | N+)*...*P(attrlbuten =V, | N+),

where P(attribute,=v,IN+) can itself be calculated as “the ratio
of name fields whose attribute, is v, to all text DOM nodes.”
Similar to P(N+), this ratio can be determined experimentally
from training data. For example, if attribute, is “bold” and v,
is true, then P(bold=trueIN+) is “the ratio of name fields
whose bold attribute is true to all text DOM nodes.”

At step 433, ULV agent 107 determines the probability that
the text DOM node is not a name field P(N-ID). Similar to the
calculation of P(N+ID), P(N-1D) may be calculated as P(N-

US 9,355,081 B2

9
ID)=P(DIN-)*P(N-)/P(D), where P(N-) is the ratio of text
DOM nodes that are not name fields to all text DOM nodes,
and P(DIN-) is calculated as

P(D | N—) = P(attrlbutel = vy, attribute; = vy, ...attribute, = v, | N—)
= P(attrlbutel =v | N —) * Pattribute, =

Vo | N—)*...*P(attrlbuten =, | N—),

where P(attribute,=v,IN-) can be calculated as “the ratio of
non-name field text DOM nodes whose attribute, is v, to all
text DOM nodes.”

Atstep 434, UIV agent 107 identifies the text DOM node as
aname field if P(N+ID)/P(N-ID)>1. A text DOM node can be
considered more likely to be a name field if P(N-ID)/P(N-
ID)>1, and vice versa, because when P(N+FID)/P(N-ID)>1,
the probability that a given DOM node is a name of an input
field is greater than the probability that the given DOM node
is not a name of an input field.

Although techniques are described herein primarily with
respect to transforming a form designed for PC browsers into
a mobile native Ul form, some embodiments may also trans-
form other content related to forms and web pages. In one
embodiment, form updates may be converted to metadata and
transmitted to the mobile device. In another embodiment,
alert messages may be transformed into mobile native Ul alert
messages by capturing alerts, transmitting the alerts to the
mobile client device, and displaying the alerts using native Ul
elements at the mobile client device. For example, Javascript
alert function invocations may be captured by a UIV agent
and sent to the mobile client device, where the same alert is
rendered as a native Ul alert.

Although techniques are described herein primarily with
respectto specific Web technologies (HITML and JavaScript),
other languages or environments may be used instead or in
addition. For example, the described techniques may be
applied to web applications having a user interface imple-
mented in ActionScript code executable in an Adobe Flash
player, or in executable code for other environments such as
Microsoft Silverlight.

Advantageously, techniques described herein permit forms
designed for PC browsers to be converted to forms with Uls
native to mobile devices. It is often more convenient for users
to read and input information into such native Ul forms.

The various embodiments described herein may employ
various computer-implemented operations involving data
stored in computer systems. For example, these operations
may require physical manipulation of physical quantities usu-
ally, though not necessarily, these quantities may take the
form of electrical or magnetic signals, where they or repre-
sentations of them are capable of being stored, transferred,
combined, compared, or otherwise manipulated. Further,
such manipulations are often referred to in terms, such as
producing, identifying, determining, or comparing. Any
operations described herein that form part of one or more
embodiments of the invention may be useful machine opera-
tions. In addition, one or more embodiments of the invention
also relate to a device or an apparatus for performing these
operations. The apparatus may be specially constructed for
specific required purposes, or it may be a general purpose
computer selectively activated or configured by a computer
program stored in the computer. In particular, various general
purpose machines may be used with computer programs writ-

10

35

45

50

65

10

ten in accordance with the teachings herein, or it may be more
convenient to construct a more specialized apparatus to per-
form the required operations.

The various embodiments described herein may be prac-
ticed with other computer system configurations including
hand-held devices, microprocessor systems, microprocessor-
based or programmable consumer electronics, minicomput-
ers, mainframe computers, and the like.

One or more embodiments of the present invention may be
implemented as one or more computer programs or as one or
more computer program modules embodied in one or more
computer readable media. The term computer readable
medium refers to any data storage device that can store data
which can thereafter be input to a computer system computer
readable media may be based on any existing or subsequently
developed technology for embodying computer programs in
a manner that enables them to be read by a computer.
Examples of a computer readable medium include a hard
drive, network attached storage (NAS), read-only memory,
random-access memory (e.g., a flash memory device), a CD
(Compact Discs) CD-ROM, a CD-R, or a CD-RW, a DVD
(Digital Versatile Disc), a magnetic tape, and other optical
and non-optical data storage devices. The computer readable
medium can also be distributed over a network coupled com-
puter system so that the computer readable code is stored and
executed in a distributed fashion.

Although one or more embodiments of the present inven-
tion have been described in some detail for clarity of under-
standing, it will be apparent that certain changes and modifi-
cations may be made within the scope of the claims.
Accordingly, the described embodiments are to be considered
as illustrative and not restrictive, and the scope of the claims
is not to be limited to details given herein, but may be modi-
fied within the scope and equivalents of the claims. In the
claims, elements and/or steps do not imply any particular
order of operation, unless explicitly stated in the claims.

Plural instances may be provided for components, opera-
tions or structures described herein as a single instance.
Finally, boundaries between various components, operations
and data stores are somewhat arbitrary, and particular opera-
tions are illustrated in the context of specific illustrative con-
figurations. Other allocations of functionality are envisioned
and may fall within the scope of the invention(s). In general,
structures and functionality presented as separate compo-
nents in exemplary configurations may be implemented as a
combined structure or component. Similarly, structures and
functionality presented as a single component may be imple-
mented as separate components. These and other variations,
modifications, additions, and improvements may fall within
the scope of the appended claims(s).

What is claimed is:
1. A method of providing access to a markup document
form, the method comprising:
dividing the markup document form into rows based on
row breaks;
determining name fields in the markup document form
which specify the names of input fields;
determining the input fields in the markup document form
which correspond to the determined name fields;
generating Ul metadata that specifies the rows and the
name and input fields; and
rendering, at a mobile client device and based on the Ul
metadata, a form having Ul elements native to the
mobile client device.
2. The method of claim 1, wherein the markup document
form is divided into rows by performing steps including:

US 9,355,081 B2

11

parsing nodes of a document object model (DOM) tree
representing the markup document form;

decomposing the DOM nodes into float elements, pre-
inline elements, sur-inline elements, and full rows;

placing the float elements at the beginning or end of rows;
and

merging the pre-inline elements and sur-inline elements of
adjacent DOM node to form TOWS.

3. The method of claim 1, wherein the name fields are

5

determined using a trained naive Bayes classification scheme. 10

4. The method of claim 3,

wherein the naive Bayes classification scheme gives the
probability that, given a node of a document object
model (DOM) tree, the given DOM node represents a
name field and the node does not represent a name field,
and

wherein the given DOM node is determined as being a

name field if the probability that the given DOM repre-
sents a name field is greater than the probability that the
given DOM node dose not represent a name field.

5. The method of claim 3, wherein the naive Bayes classi-
fication scheme is trained using markup document forms with
name fields and input fields that are manually classified.

6. The method of claim 1, wherein the input fields are
determined based on at least proximity to the corresponding
name fields.

7. The method of claim 1, further comprising, responsive to
detecting user input via the native Ul elements at the mobile
client, forwarding the native Ul input events as markup docu-
ment form events.

8. The method of claim 1, wherein the markup document
comprises an HTML document.

9. The method of claim 1, further comprising, capturing an
alert and transmitting the captured alert to the mobile client
device to be rendered using Ul elements that are native to the
mobile client device.

10. A non-transitory computer-readable storage medium
comprising instructions that, when executed in a computing
device, provide access to a markup document form by per-
forming the steps comprising:

dividing the markup document form into rows based on

row breaks;

determining name fields in the markup document form

which specify the names of input fields;

determining the input fields in the markup document form

which correspond to the determined name fields;
generating Ul metadata that specifies the rows and the
name and input fields; and

rendering, at a mobile client device and based on the Ul

metadata, a form having Ul elements native to the
mobile client device.

11. The non-transitory computer-readable storage medium
of claim 10, wherein the markup document form is divided
into rows by performing steps including:

20

25

30

35

40

45

50

parsing nodes of a document object model (DOM) tree 55

representing the markup document form;
decomposing the DOM nodes into float elements, pre-
inline elements, sur-inline elements, and full rows;

12

placing the float elements at the beginning or end of rows;

and

merging the pre-inline elements and sur-inline elements of

adjacent DOM node to form TOWS.

12. The non-transitory computer-readable storage medium
of claim 10, wherein the name fields are determined using a
trained naive Bayes classification scheme.

13. The non-transitory computer-readable storage medium
of claim 12,

wherein the naive Bayes classification scheme gives the

probability that, given a node of a document object
model (DOM) tree, the given DOM node represents a
name field and the node does not represent a name field,
and

wherein the given DOM node is determined as being a

name field if the probability that the given DOM repre-
sents a name field is greater than the probability that the
given DOM node dose not represent a name field.

14. The non-transitory computer-readable storage medium
of claim 10, wherein the input fields are determined based on
at least proximity to the corresponding name fields.

15. The non-transitory computer-readable storage medium
of claim 10, the steps further comprising, responsive to
detecting user input via the native Ul elements at the mobile
client, forwarding the native Ul input events as markup docu-
ment form events.

16. The non-transitory computer-readable storage medium
of claim 10, wherein the markup document comprises an
HTML document.

17. The non-transitory computer-readable storage medium
of claim 10, the steps further comprising, capturing an alert
and transmitting the captured alert to the mobile client device
to be rendered using Ul elements that are native to the mobile
client device.

18. A system comprising:

a processor; and

a memory, wherein the memory includes a program for

reducing perceived read latency, the program being con-

figured to perform operations for providing access to a

markup document form, comprising:

dividing the markup document form into rows based on
row breaks,

determining name fields in the markup document form
which specify the names of input fields,

determining the input fields in the markup document
form which correspond to the determined name fields,

generating Ul metadata that specifies the rows and the
name and input fields, and

rendering, at a mobile client device and based on the Ul
metadata, a form having Ul elements native to the
mobile client device.

19. The system of claim 18, wherein the name fields are
determined using a trained naive Bayes classification scheme.

20. The system of claim 18, wherein the input fields are
determined based on at least proximity to the corresponding
name fields.

